Базы данных. Вводный курс


Заключение


В завершение лекции хочу отметить несколько моментов. Прежде всего, заметим, что алгебра Кодда была представлена не в ее оригинальной форме, а с некоторыми существенными коррективами, внесенными Кристофером Дейтом. С моей точки зрения, одной из наиболее значительных корректив было добавление тривиальной на первый взгляд операции переименования атрибутов. Когда Эдгар Кодд в конце 1960-х гг. впервые опубликовал свою алгебру, основное внимание в ней уделялось тому, как конструируются результирующие множества кортежей, т. е. что представляют собой тела результатов операций. Гораздо меньше внимания уделялось заголовкам отношений-результатов. Фактически Кодд пытался применить для именования атрибутов результатов операций точечную нотацию, используя для уточнения имен атрибутов имена исходных отношений-операндов. При наличии произвольно сложных и длинных алгебраических выражений этот путь, в лучшем случае, вел к порождению длинных и трудных для восприятия имен. Очевидно, что введение операции переименования атрибутов позволяет легко справиться с этой проблемой.

Далее, алгебра Кодда исключительно избыточна. Операции пересечения, декартова произведения и естественного соединения, на самом деле, являются частными случаями одной более общей операции, о которой пойдет речь в следующей лекции. Введение операции декартова произведения в качестве базовой операции алгебры может ввести в заблуждение неопытных студентов и читателей, не осознающих практическую бессмысленность этой операции.

Почему же мы начали обсуждение базовых манипуляционных механизмов реляционной модели данных с этой небезупречной и несколько устаревшей алгебры? Конечно, прежде всего, из уважения к заслугам доктора Эдгара Кодда, вклад которого в современную технологию баз данных невозможно переоценить. Более практические соображения, повлиявшие на наше решение начать обсуждение с алгебры Кодда, заключались в том, что семантика языка SQL во многом базируется именно на этой алгебре, и нам будет проще изучать SQL, предварительно познакомившись с ней.

  Здесь A.c и B.c представляют собой так называемые квалифицированные (уточненные) имена атрибутов (часто такой способ именования называют точечной нотацией). Мы будем использовать подобную нотацию в тех случаях, когда требуется явно показать, схеме какого отношения принадлежит данный атрибут.




Начало  Назад  Вперед